本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载。
评估模型
模型拟合之后,我们可以在留出的测试数据集上评估它的预测技能。
使模型对测试数据集中的所有图像生成描述,使用标准代价函数评估预测,从而评估模型。
首先,我们需要使用训练模型对图像生成描述。输入开始描述的标记 『startseq『,生成一个单词,然后递归地用生成单词作为输入启用模型直到序列标记到 『endseq『或达到最大描述长度。
下面的 generate_desc() 函数实现该行为,并基于给定训练模型和作为输入的准备图像生成文本描述。它启用 word_for_id() 函数以映射整数预测至单词。
# map an integer to a word
def word_for_id(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
# generate a description for an image
def generate_desc(model, tokenizer, photo, max_length):
# seed the generation process
in_text = 'startseq'
# iterate over the whole length of the sequence
for i in range(max_length):
# integer encode input sequence
sequence = tokenizer.texts_to_sequences([in_text])[0]
# pad input
sequence = pad_sequences([sequence], maxlen=max_length)
# predict next word
yhat = model.predict([photo,sequence], verbose=0)
# convert probability to integer
yhat = argmax(yhat)
# map integer to word
word = word_for_id(yhat, tokenizer)
# stop if we cannot map the word
if word is None:
break
# append as input for generating the next word
in_text += ' ' + word
# stop if we predict the end of the sequence
if word == 'endseq':
break
return in_text
我们将为测试数据集和训练数据集中的所有图像生成预测。
下面的 evaluate_model() 基于给定图像描述数据集和图像特征评估训练模型。收集实际和预测描述,使用语料库 BLEU 值对它们进行评估。语料库 BLEU 值总结了生成文本和期望文本之间的相似度。
# evaluate the skill of the model
def evaluate_model(model, descriptions, photos, tokenizer, max_length):
actual, predicted = list(), list()
# step over the whole set
for key, desc_list in descriptions.items():
# generate description
yhat = generate_desc(model, tokenizer, photos[key], max_length)
# store actual and predicted
references = [d.split() for d in desc_list]
actual.append(references)
predicted.append(yhat.split())
# calculate BLEU score
print('BLEU-1: %f' % corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0)))
print('BLEU-2: %f' % corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0)))
print('BLEU-3: %f' % corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0)))
print('BLEU-4: %f' % corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25)))
BLEU 值用于在文本翻译中评估译文和一或多个参考译文的相似度。
这里,我们将每个生成描述与该图像的所有参考描述进行对比,然后计算 1、2、3、4 等 n 元语言模型的 BLEU 值。
NLTK Python 库在 corpus_bleu() 函数中实现了 BLEU 值计算。分值越接近 1.0 越好,越接近 0 越差。
我们可以结合前面加载数据部分中的函数。首先加载训练数据集来准备 Tokenizer,以使我们将生成单词编码成模型的输入序列。使用模型训练时使用的编码机制对生成单词进行编码非常关键。
然后使用这些函数加载测试数据集。完整示例如下:
from numpy import argmax
from pickle import load
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model
from nltk.translate.bleu_score import corpus_bleu
# load doc into memory
def load_doc(filename):
# open the file as read only
file = open(filename, 'r')
# read all text
text = file.read()
# close the file
file.close()
return text
# load a pre-defined list of photo identifiers
def load_set(filename):
doc = load_doc(filename)
dataset = list()
# process line by line
for line in doc.split('\n'):
# skip empty lines
if len(line) < 1:
continue
# get the image identifier
identifier = line.split('.')[0]
dataset.append(identifier)
return set(dataset)
# load clean descriptions into memory
def load_clean_descriptions(filename, dataset):
# load document
doc = load_doc(filename)
descriptions = dict()
for line in doc.split('\n'):
# split line by white space
tokens = line.split()
# split id from description
image_id, image_desc = tokens[0], tokens[1:]
# skip images not in the set
if image_id in dataset:
# create list
if image_id not in descriptions:
descriptions[image_id] = list()
# wrap description in tokens
desc = 'startseq ' + ' '.join(image_desc) + ' endseq'
# store
descriptions[image_id].append(desc)
return descriptions
# load photo features
def load_photo_features(filename, dataset):
# load all features
all_features = load(open(filename, 'rb'))
# filter features
features = {k: all_features[k] for k in dataset}
return features
# covert a dictionary of clean descriptions to a list of descriptions
def to_lines(descriptions):
all_desc = list()
for key in descriptions.keys():
[all_desc.append(d) for d in descriptions[key]]
return all_desc
# fit a tokenizer given caption descriptions
def create_tokenizer(descriptions):
lines = to_lines(descriptions)
tokenizer = Tokenizer()
tokenizer.fit_on_texts(lines)
return tokenizer
# calculate the length of the description with the most words
def max_length(descriptions):
lines = to_lines(descriptions)
return max(len(d.split()) for d in lines)
# map an integer to a word
def word_for_id(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
# generate a description for an image
def generate_desc(model, tokenizer, photo, max_length):
# seed the generation process
in_text = 'startseq'
# iterate over the whole length of the sequence
for i in range(max_length):
# integer encode input sequence
sequence = tokenizer.texts_to_sequences([in_text])[0]
# pad input
sequence = pad_sequences([sequence], maxlen=max_length)
# predict next word
yhat = model.predict([photo,sequence], verbose=0)
# convert probability to integer
yhat = argmax(yhat)
# map integer to word
word = word_for_id(yhat, tokenizer)
# stop if we cannot map the word
if word is None:
break
# append as input for generating the next word
in_text += ' ' + word
# stop if we predict the end of the sequence
if word == 'endseq':
break
return in_text
# evaluate the skill of the model
def evaluate_model(model, descriptions, photos, tokenizer, max_length):
actual, predicted = list(), list()
# step over the whole set
for key, desc_list in descriptions.items():
# generate description
yhat = generate_desc(model, tokenizer, photos[key], max_length)
# store actual and predicted
references = [d.split() for d in desc_list]
actual.append(references)
predicted.append(yhat.split())
# calculate BLEU score
print('BLEU-1: %f' % corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0)))
print('BLEU-2: %f' % corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0)))
print('BLEU-3: %f' % corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0)))
print('BLEU-4: %f' % corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25)))
# prepare tokenizer on train set
# load training dataset (6K)
filename = 'Flickr8k_text/Flickr_8k.trainImages.txt'
train = load_set(filename)
print('Dataset: %d' % len(train))
# descriptions
train_descriptions = load_clean_descriptions('descriptions.txt', train)
print('Descriptions: train=%d' % len(train_descriptions))
# prepare tokenizer
tokenizer = create_tokenizer(train_descriptions)
vocab_size = len(tokenizer.word_index) + 1
print('Vocabulary Size: %d' % vocab_size)
# determine the maximum sequence length
max_length = max_length(train_descriptions)
print('Description Length: %d' % max_length)
# prepare test set
# load test set
filename = 'Flickr8k_text/Flickr_8k.testImages.txt'
test = load_set(filename)
print('Dataset: %d' % len(test))
# descriptions
test_descriptions = load_clean_descriptions('descriptions.txt', test)
print('Descriptions: test=%d' % len(test_descriptions))
# photo features
test_features = load_photo_features('features.pkl', test)
print('Photos: test=%d' % len(test_features))
# load the model
filename = 'model-ep002-loss3.245-val_loss3.612.h5'
model = load_model(filename)
# evaluate model
evaluate_model(model, test_descriptions, test_features, tokenizer, max_length)
运行示例打印 BLEU 值。我们可以看到 BLEU 值处于该问题较优的期望范围内,且接近最优水平。并且我们并没有对选择的模型配置进行特别的优化。
BLEU-1: 0.579114
BLEU-2: 0.344856
BLEU-3: 0.252154
BLEU-4: 0.131446
生成新的图像字幕
现在我们了解了如何开发和评估字幕生成模型,那么我们如何使用它呢?
我们需要模型文件中全新的图像,还需要 Tokenizer 用于对模型生成单词进行编码,生成序列和定义模型时使用的输入序列最大长度。
我们可以对最大序列长度进行硬编码。文本编码后,我们就可以创建 tokenizer,并将其保存至文件,这样我们可以在需要的时候快速加载,无需整个 Flickr8K 数据集。另一个方法是使用我们自己的词汇文件,在训练过程中将其映射到取整函数。
我们可以按照之前的方式创建 Tokenizer,并将其保存为 pickle 文件 tokenizer.pkl。完整示例如下:
from keras.preprocessing.text import Tokenizer
from pickle import dump
# load doc into memory
def load_doc(filename):
# open the file as read only
file = open(filename, 'r')
# read all text
text = file.read()
# close the file
file.close()
return text
# load a pre-defined list of photo identifiers
def load_set(filename):
doc = load_doc(filename)
dataset = list()
# process line by line
for line in doc.split('\n'):
# skip empty lines
if len(line) < 1:
continue
# get the image identifier
identifier = line.split('.')[0]
dataset.append(identifier)
return set(dataset)
# load clean descriptions into memory
def load_clean_descriptions(filename, dataset):
# load document
doc = load_doc(filename)
descriptions = dict()
for line in doc.split('\n'):
# split line by white space
tokens = line.split()
# split id from description
image_id, image_desc = tokens[0], tokens[1:]
# skip images not in the set
if image_id in dataset:
# create list
if image_id not in descriptions:
descriptions[image_id] = list()
# wrap description in tokens
desc = 'startseq ' + ' '.join(image_desc) + ' endseq'
# store
descriptions[image_id].append(desc)
return descriptions
# covert a dictionary of clean descriptions to a list of descriptions
def to_lines(descriptions):
all_desc = list()
for key in descriptions.keys():
[all_desc.append(d) for d in descriptions[key]]
return all_desc
# fit a tokenizer given caption descriptions
def create_tokenizer(descriptions):
lines = to_lines(descriptions)
tokenizer = Tokenizer()
tokenizer.fit_on_texts(lines)
return tokenizer
# load training dataset (6K)
filename = 'Flickr8k_text/Flickr_8k.trainImages.txt'
train = load_set(filename)
print('Dataset: %d' % len(train))
# descriptions
train_descriptions = load_clean_descriptions('descriptions.txt', train)
print('Descriptions: train=%d' % len(train_descriptions))
# prepare tokenizer
tokenizer = create_tokenizer(train_descriptions)
# save the tokenizer
dump(tokenizer, open('tokenizer.pkl', 'wb'))
现在我们可以在需要的时候加载 tokenizer,无需加载整个标注训练数据集。下面,我们来为一个新图像生成描述,下面这张图是我从 Flickr 中随机选的一张图像。
海滩上的狗
我们将使用模型为它生成描述。首先下载图像,保存至本地文件夹,文件名设置为「example.jpg」。然后,我们必须从 tokenizer.pkl 中加载 Tokenizer,定义生成序列的最大长度,在对输入数据进行填充时需要该信息。
# load the tokenizer
tokenizer = load(open('tokenizer.pkl', 'rb'))
# pre-define the max sequence length (from training)
max_length = 34
然后我们必须加载模型,如前所述。
# load the model
model = load_model('model-ep002-loss3.245-val_loss3.612.h5')
接下来,我们必须加载要描述和提取特征的图像。
重定义该模型、向其中添加 VGG-16 模型,或者使用 VGG 模型来预测特征,使用这些特征作为现有模型的输入。我们将使用后一种方法,使用数据准备阶段所用的 extract_features() 函数的修正版本,该版本适合处理单个图像。
# extract features from each photo in the directory
def extract_features(filename):
# load the model
model = VGG16()
# re-structure the model
model.layers.pop()
model = Model(inputs=model.inputs, outputs=model.layers[-1].output)
# load the photo
image = load_img(filename, target_size=(224, 224))
# convert the image pixels to a numpy array
image = img_to_array(image)
# reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# prepare the image for the VGG model
image = preprocess_input(image)
# get features
feature = model.predict(image, verbose=0)
return feature
# load and prepare the photograph
photo = extract_features('example.jpg')
之后使用评估模型定义的 generate_desc() 函数生成图像描述。为单个全新图像生成描述的完整示例如下:
from pickle import load
from numpy import argmax
from keras.preprocessing.sequence import pad_sequences
from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.vgg16 import preprocess_input
from keras.models import Model
from keras.models import load_model
# extract features from each photo in the directory
def extract_features(filename):
# load the model
model = VGG16()
# re-structure the model
model.layers.pop()
model = Model(inputs=model.inputs, outputs=model.layers[-1].output)
# load the photo
image = load_img(filename, target_size=(224, 224))
# convert the image pixels to a numpy array
image = img_to_array(image)
# reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# prepare the image for the VGG model
image = preprocess_input(image)
# get features
feature = model.predict(image, verbose=0)
return feature
# map an integer to a word
def word_for_id(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
# generate a description for an image
def generate_desc(model, tokenizer, photo, max_length):
# seed the generation process
in_text = 'startseq'
# iterate over the whole length of the sequence
for i in range(max_length):
# integer encode input sequence
sequence = tokenizer.texts_to_sequences([in_text])[0]
# pad input
sequence = pad_sequences([sequence], maxlen=max_length)
# predict next word
yhat = model.predict([photo,sequence], verbose=0)
# convert probability to integer
yhat = argmax(yhat)
# map integer to word
word = word_for_id(yhat, tokenizer)
# stop if we cannot map the word
if word is None:
break
# append as input for generating the next word
in_text += ' ' + word
# stop if we predict the end of the sequence
if word == 'endseq':
break
return in_text
# load the tokenizer
tokenizer = load(open('tokenizer.pkl', 'rb'))
# pre-define the max sequence length (from training)
max_length = 34
# load the model
model = load_model('model-ep002-loss3.245-val_loss3.612.h5')
# load and prepare the photograph
photo = extract_features('example.jpg')
# generate description
description = generate_desc(model, tokenizer, photo, max_length)
print(description)
这种情况下,生成的描述如下:
startseq dog is running across the beach endseq
移除开始和结束的标记,或许这就是我们希望模型生成的语句。至此,我们现在已经完整地使用模型为图像生成文本描述,虽然这一实现非常基础与简单,但它是我们继续学习强大图像描述模型的基础。我们也希望本文能带领给为读者实操地理解图像描述模型。
原文来自:机器之心
声明:所有来源为“聚合数据”的内容信息,未经本网许可,不得转载!如对内容有异议或投诉,请与我们联系。邮箱:marketing@think-land.com
支持识别各类商场、超市及药店的购物小票,包括店名、单号、总金额、消费时间、明细商品名称、单价、数量、金额等信息,可用于商品售卖信息统计、购物中心用户积分兑换及企业内部报销等场景
涉农贷款地址识别,支持对私和对公两种方式。输入地址的行政区划越完整,识别准确度越高。
根据给定的手机号、姓名、身份证、人像图片核验是否一致
通过企业关键词查询企业涉讼详情,如裁判文书、开庭公告、执行公告、失信公告、案件流程等等。
IP反查域名是通过IP查询相关联的域名信息的功能,它提供IP地址历史上绑定过的域名信息。